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The transformational and Liouville carrier space (LCS) properties of dual tensorial bases
for [A . . .]n NMR spin systems are considered within the quantum physics of (super)boson
quasiparticles, where the (contracted) auxiliary labels of SU(2) × Sn tensors are derived
from the Sn-based scalar invariants (SIs). Beyond both the {s2

i} (super)bosons mappings
of pattern-algebra [F.P. Temme, Physica A 198 (1993) 245] and the (outer) k-rank based
sub-structure of LCS (e.g., in terms of S12 irreps [F.P. Temme, J. Math. Chem. 27 (2000)
111 (this issue)]), now (cf. Jucys recoupling) we consider the dual group physics role of
the {Ṽ} auxiliary terms of the (SI-related) democratic sets for all the > 4-fold multispin
systems, as obtained via the Sn−1 ⊃ · · · ⊃ ([2])S2 Yamanouchi–Gel’fand chains (YGCs).
The simple reducibility of LCS derives from the explicit role of such auxiliary labels in
dual mapping. The full monomial YGC reduction coefficient sets, and their related sum
rule, are given here for SU(2)× S12 tensorial sets and the distinctness of individual reduc-
tion pathways is demonstrated. Recent enumerative work on SIs [F.P. Temme, J. Magn.
Reson. (2000) (to appear)] (extending [P.L. Corio, J. Magn. Reson. 134 (1998) 131])
gives expressions for the numbers of independent S12 (S20) SIs for icosa-(dodeca)hedral
spin ensembles. The search for additional insight into multiquantum evolution (or co-
herence transfer) from the use of {T kq

{Ṽ}
(11, . . . , 1n; [λ̃])} dual bases motivates this work

– cf. that of [M.C. Carravetta et al., J. Magn. Reson. 134 (1998) 131; B.C. Sanctu-
ary, Molecular Phys. 55 (1985) 1017]. Studies of SIs, and of the origins of Cayley’s
group embedding theorem, highlight the need to retain the Sn group in quantum physics
involving spin ensembles, cf. Corio’s O(3) viewpoint. A recent lattice-point model of
12-fold cage isotopomers, now for general multipartite forms, has demonstrated that uni-
versal mathematical determinacy (a property for which YGCs are especially noted) also
prevails in SU(m) × S12 ↓ I natural group embedding [F.P. Temme, Eur. Phys. J. 11
(1999) 177].
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1. Introduction

In the study of multispin ([A]n), [A]nX, or [AX]n type NMR systems [12,16,
23,24,40,44,63] in liquid (or mobile liquid crystal) media, it is valuable to focus on
certain essential symmetry-related questions. These are important because they serve
to define the nature of the model spin system, and yield some fuller physical insight
into their spin dynamics. Prominent amongst these are the number of scalar invari-
ants (SIs) [14] which underlie the auxiliary label set in dual-group-based formalisms.
Some knowledge of the form of these SIs is necessary, in order to define suitable mul-
tispin tensorial bases and understand various aspects of their transformational prop-
erties. Indeed, the specific properties of dual tensorial bases impart some additional
meaning to NMR studies of spin dynamical processes [39], such as multiquantum evo-
lution, or coherence transfer, even when there exist earlier spin dynamical treatments
in the framework of simple (inner) SU(2)-related formalisms. Experimentally, it is
well known that COSY-based multiquantum filtering phased-pulse techniques [2,18]
(MQF) are of considerable value in understanding the multiquantum evolution, or co-
herence transfer processes of multispin ensemble systems, including those exhibiting
some form of spin symmetry. From the theoretical perspective of contractive recou-
pling, naturally the requisite n − 2 auxiliary labels of v = (11, . . . , 1n){. . .} n-fold
systems, derived from the SIs (under the dual group), play a central role in the use
of tensorial formalisms, since they reflect the inherent structure of Liouville space
as known from superboson mapping techniques. The conceptual reason for treating
NMR spin dynamics via such formalisms (rather than by other methods) is that these
are general spectroscopic or theoretical techniques [36] with well-known properties.
Under dual group symmetry [1,5–7,34,41,42,49,50,52,54,58], the inner SU(2)-based
{ki} set of v (or corresponding (i1, . . . , in) of Hilbert space) retain their status as good
quantum numbers, under the action of complete nuclear spin permutation for the type
of NMR spin ensemble system discussed here.

In earlier work [50,52,54], we have examined the structure of Liouville space
under various SU(2) × Sn dual algebras, because of the physical insight such ap-
plications impart to specific non-symmetry-breaking forms (in an Sn permutational
sense) of quantum Liouville equations (QLEs). Here we utilise the automorphic
(finite subgroup) symmetries arising from a complete set of nuclear spin permuta-
tional (CNP) operations [12,16,23,24,50,52,54], applied to a spin cluster. The re-
sultant irreps under the dual group are of value, both in discussing nuclear spin
spectral statistical weightings of cage isotopomeric clusters (as mentioned in [58])
and in understanding the various ([A]n), [A]nX, or [AX]n types of NMR spin sys-
tems [2,12,14,16,18,23,24,36,39,50,52,54,58]. The immediately preceding article [58]
has set out some of the initial dual tensorial basis aspects, namely those which specif-
ically pertain to 12-fold (Liouvillian) symmetry under the SU(2) × S12 dual group.
In this paper [58], a symbolic algorithmic derivation (based on Schur functions) was
utilised to obtain the {p 6 4} partitioned (tensorial) irrep subsets, as functions of the
outer k rank (alone). The value of such an approach is that it allows one to under-
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stand the role of carrier spaces in quantum physics, a viewpoint not generally adopted
in discussing NMR problems. The use of dual tensorial bases in NMR applications
naturally implies that the specific form of Liouvillian is dominated by its intraclus-
ter interactions [2,12,14,16,18,23,24,50,52,54] (as in the above case of SU(2) × S12

spin symmetry discussed in [58]), whereas all the component intercluster terms of the
{JAX} set are small, by comparison.

For [A . . .]n-derived spin systems evolving under either purely scalar or both
scalar and isotropic dipolar interactions, the dynamical properties may be studied most
conveniently in terms of the dual group bases and in the QL formalism. However,
such Liouvillian bases have some inherent essential operator (and carrier space) physics
of their own. Within spin ensemble dynamics, the former arise via the (outer) spin-
operator-based {kqv} labelled angular momentum properties [1,5–7,34,36,39,41,42,49]
associated with Liouville space, as in

Î • Î|kqv〉〉 ≡ k(k + 1)|kqv〉〉, for Î ≡
[

Î,
]
−,

(1)
Î0|kqv〉〉 ≡ q|kqv〉〉,

where k is the outer tensorial rank and q its conventional z-projection. An underlying,
equally general transformational property [5,34,39,41,42,49] applies to Liouville space
as a product-space, namely that

X (Γ)|kqv〉〉X (Γ)† ≡
∑
µ′

X̃µ′(Γ)
∣∣kqv(µ′)

〉〉
, (2)

for Xµ, X̃µ′ projective (class/cycle) operators (or their characters) of some (dual) group
action, in respectively Hilbert and Liouville space. This property significantly enhances
the utility of dual group algebras and projective methods. One of these, the physics
of (super)boson pattern-algebra [6,7], plays an especially important role in defining
the structure of Liouville space. Both (super)boson algebras and the nature of Wigner
unit-operators (as applied to Liouville space) deserve to be better known, in the context
of quantum-physics-based ideas discussed, e.g., by Biedenharn and Louck [6,7].

Since some of these wider physics topics have been surveyed in detail elsewhere,
see, e.g., [54,58], we give only brief commentaries here. The purpose of several
gedanke-experiments (discussed in [50–52,54,58]) was to define [A]n(X), [AX]n spin
clusters as NMR systems [5,12,16,23,24,34,41,42,49] in a way which allows precise
answers to the following insightful questions:

(a) What is the nature of the mechanism which allows for the retention of simple re-
ducibility (SR) of SU(2) symmetry for NMR over dual group-formulated Liouville
space?

(b) How can one understand the correlation of similar properties, in a general sense,
between the two common quantum mechanical spaces?

(c) And also, just how do the two distinct groups of the dual group established an
interactive mode of communication?
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In this context, we stressed in [58] that the auxiliary labels (defining the scalar invari-
ants) for Liouvillian carrier space of boson mapping are now explicit parameters of the
(projective) mapping, in contrast to their merely implicit role over the simple carrier
space of {|IM (i1, . . . , in)〉} Hilbert space [1,6,7]. The answers to the questions that
were posed above appear in discourses given in papers [50,52,54] for (a), or else from
equation (2) for (b), and finally in respect of (c), in our 1992/1993 work [51].

The nature of the above comments stress the well-known inseparability of quan-
tum physics modelling, or their applications, from the fundamental symmetry principles
inherent in descriptions of the actual phenomena. Spectroscopies at their most funda-
mental level exhibit certain similarities or correlations, but the question of what does,
or does not, constitute an observable is only rarely of significance to the actual quantum
physics. Recent developments (set out in [58]) have been focused on the role of the
highest n-indexed Sn CNP-based systems from the viewpoint [35] of group structure,
as part of algorithmic combinatorial physics via group actions [26,27]. In such research
areas, a number of well-established discrete mathematics techniques have proved to be
invaluable. Progress via some suitable symbolic computational method [26,27] is then
possible. Of the various libraries available for such purposes, the SYMMETRICA
package [27] is quite general and only requires a modest level of C-language skill to
allow for its direct application to problems of scientific interest. In practice, much of
the detailed work reported in [58] only required the use of symbolic computation, as
an additional check on various component decompositions as combinatorial enumera-
tions. The use of sum-rules and direct (hand) enumeration was adequate in analysing
YGC reduction processes reported herein.

The present work extends our view of the {[λ̃](Sn(=12))} set of irreps (given
in [58]) by considering the forms of Sn encoding and certain symmetry reduction
coefficients of pertinence to the definition of democratic Sn-invariants. This neces-
sitates considering all the (p 6 4) branched forms of the irreps generated in [58].
Such views of what underlies the SR property of the dual group over Liouville spin
space (to be found in [50,52]) lifts the idea of recoupling, from being one governed
by constrained formalisms of {K̃, . . .} recoupling based on (11, . . . , 1n) and somewhat
arbitrary choices implicit in diagrammatic techniques of graph theory [25,36], into new
realms. There it provides a proper Sn-democratic-based formalism which is compara-
ble to (super)boson mapping techniques. Such mapping properties are clearly beyond
the (⊗SU(2))n-based views adopted by Corio [14]. In consequence, they constitute
one important focus of the present work, in which the specific use of the Sn group,
its irreps, and its democracy are established at the outset. This framework leads to the
following equivalence relationship between graphical and dual-group-based tensorial
sets: {

T kq
{K̃,...}

(v)
}
≡
{
T kq

{Ṽ ,...}

(
11, . . . , 1n :

[
λ̃
])

(Sn)
}

(3)

(as indicated in [58]), where {Ṽ} is a set of labels derived from the democratically de-
fined scalar invariants, discussed in sections 2–4. In contrast to the usage adopted here
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and in [58], previous Sn symmetry chain reduction schemes have been restricted to
resolving more general particle-physics labelling problems, i.e. those involving reduc-
tion coefficients (RCs). These topics are extensively covered in the theoretical works
of Sullivan [46] and Chen [10]. In addition, a concise mathematical summary of the
nature of YGC chains and their associated properties may be found in Sternberg’s
(1994) monograph [45].

The focus in the present work is on generalised Sn-democratic properties of
dual-group-based spin systems and their underlying Sn-invariants (i.e. beyond the few-
body analogues of explicit quantum physics systems derived by Lévy-Leblond and
Lévy-Nahas [30] in the mid-1960s). It was shown via the explicit quantum algebra
of [30] that the democratic and graph theoretic results for the three-body case differ
only by a 6j-coefficient. Further direct analytic algebraic treatment over generalised
n > 4-fold spin (many-body) interactions (unless they happen to correspond to the
S4 ⊃ D2 (⊃ C2) subgroups [20]) are not feasible for a rather specific mathematical
reason associated with higher degeneracies. The basis for this fundamental insight lies
in a group theoretical argument, originally due to Galbraith [20]. He pointed out that
the degeneracy of higher permutational symmetries implies that such systems were
governed by more than a single system invariant. Hence, the number of (independent)
invariants (SIs) in NMR systems is of greater physical significance than the discussion
in the previous O(3) ↓ G-based Hilbert space work [11,13,14] would suggest (see also
works of H. Weyl, E.P. Wigner cited in [14]).

Naturally, the retention of Balasubramanian’s ideas concerning the role of au-
tomorphic spin symmetry in NMR [3] (and hence, the role of the Sn group in spin
physics, as a subgroup of (G)Ln), is central to our physical understanding of the nature
of carrier spaces, and thus, of dual projective mapping in either Hilbert, or Liouville,
space. As a consequence of Cayley’s theorem [10], all the conventional finite symme-
try groups are clearly subgroups of the Sn group, rather than being directly derived
from the (S)O(3) group. Hence it is noted that [AX]n NMR cluster problems with
their automorphic Sn ↓ G symmetries necessitate the retention of the Sn group on two
quite independent grounds. The first is as a result of the necessity to retain simple
reducibility properties under dual group actions for mappings over Liouville space, as
discussed in an earlier discourse [52]. An additional reason is discernable on consid-
ering the Sn index-based form of Cayleyan theorem for mathematically determinable
finite group embeddings into particular Sn groups, as it here applies to spin symme-
tries based on SU(2) bipartite algebras. For group embeddings involving other types of
irreps under the wider SU(m)×Sn dual symmetry, which approach the maximal multi-
partite branching levels of [47], the criterion given from this theorem is necessary,
but in itself not sufficient to ensure mathematical determinacy.

After an overview of Yamanouchi–Gel’fand chain (YGC) properties and a brief
comment in section 2 on the nature of the auxiliary labels in the context of dual
group projective actions, section 3 of the paper turns to the central focus of work,
the tabulation of the monomial reduction coefficients over the YGC-hierarchy. Here
we consider specifically the {S11 ⊃ · · · (stepwise down to) · · · ⊃ S2} YG process,
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within a sum-rule, and note that only the [2](S2) terminating routes are pertinent to
the SI auxiliary labelling, discussed here. Section 4 sets out specific illustrations of
chain labelling for scalar invariants, in the context of actual enumerations of their
gradually extending cardinality for modest symmetric groups with indices n 6 6, i.e.
in accord with other work in the area of the number of possible independent forms
for [A]n, for n = 12, 20 (see [54]). A brief overview on the consequences of the
two distinct types of Liouvillian transformation, and of their impact on the nature of
Wigner unit-(super)operators in such spaces, follows in section 5. In a penultimate
section 6, we consider a couple of NMR applications [9,17,31–33,38,48] which serve
to highlight the pertinence of Sn democratic recoupling formalisms; for a contrasting
overview of state space nuclear spin statistical weightings, in the CNP spin aspects of
isotopomers [4,21,53,55,59,62], the reader is referred to our remarks in [58].

In order to relate different approaches to the study of SIs of spin ensembles, we
stress here that group-theoretical correlations [8] are known between the group chain
embeddings involving the O(n) and those for Sn groups (see equation (6) of [58]).
Rather surprisingly, the nature of the linkage between these separate chains is not as
well known as the importance of the topic to molecular physics might suggest. In addi-
tion to incorporating more recent work on SIs [56,60], brief mentions are accorded the
topics of group structure, as observed by symbolic computing via high-index decompo-
sitions [61] of inner products, and the potentially technologically significant question of
the role of projective decompositions, as applied to the NMR density matrices [37] in
the context of potential processes for NMR modelling [15,19,22,28,29,43] of quantum
computing.

2. Quantum physics of NMR on tensorial operator bases: Dual projective
maps having explicit auxiliary labels

In order to correlate this work with discussions of related areas, we set out some
of the background (i.e. of [50,54] which should be read in the context and the existing
notation of [1,5–7,34,39,41,42,49]) briefly here, in order to make the cogency of the use
of YGC pathways as system invariants clear to the reader. Naturally, the presentation
for Liouville space is based on the (p 6 4)-partite irrep set of the preceding paper [58].
For the space of dynamical quantum processes, one needs to introduce first the (NMR)
density matrix, from which the quantum Liouville equation (QLE) (equation (5) below)
follows directly [5,34,39,41,42,49]:

σ(t) =
kmax∑
k=0

k∑
q=−k

φkq (v : t)T kq
{Ṽ}

(11, . . . , 1n), (4)

(−i)d(t)φ
k
q (v) =

∑
k′q′v′

〈〈
kqv
∣∣L̂∣∣k′q′v′〉〉φk′q′ (v′t=0); (5)
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the form of the auxiliary terms includes the dual group partitional irreps once automor-
phic spin symmetry is adopted. For a typical L̂ Liouville operator (or superoperator)
acting on a spin ensemble system whose evolution is dominated by the zeroth order in-
tracluster interaction terms (as presented in [58]), with L̂ ≡ [Ĥ (0) + Ĥ1, ·]−, analogous
Sn-partitioned forms exist to those given above in equations (4), (5). One notes here,
in the context of {T kq(v)} ≡ {|kqv〉〉} being a (dual) tensorial basis set, within which
the ks now are of integer rank defining the range of the −k 6 q 6 k projections, that
the v terms of the density matrix include all the remaining (11, . . . , 1n){̃·} auxiliary
terms, under either a conventional graphical, or democratic, recoupling criteria. The
φkq (v) terms of the QLE above are NMR coherences (or polarisations for q = 0) and
represent a set of time-dependent coefficients which correspond to the physical observ-
ables of spin dynamics. In NMR applications, these dynamical techniques naturally
require the use of some initial t = 0 condition.

For NMR evolution and a number of similar processes, a further symmetry arises
from the additional permutational properties of [A . . .]n type systems. This allows
the use of dual group projective mapping over the v-designated subspaces of the full
Liouvillian carrier space H̃, as an augmented form compared to the original simple
Hilbert space boson algebraic mappings of Biedenharn and Louck [1,6,7]. Over the
full {H̃ ≡

⊕
H̃v} carrier space, dual group projective actions may be represented by

the following mapping:

Ũ×P : H̃→ H̃
{
Dk
(
Ũ
)
× Γ̃[λ](v)(P)

∣∣ Ũ ∈ SU(2); Γ̃[λ](v),P ∈ Sn
}

, (6)

based on superboson algebra, with the Dk(Ũ) (Liouvillian) transformations as de-
fined in equation (17) of section 5. One notes that there is a direct correspondence
here to the graphical recoupling properties (hereafter referred to as SJG properties),
discussed in Sanctuary’s 1976 paper [41] on Jucys-like generalised spherical tensors
under SO(3) ≡ SU(2) (alone) for NMR spin dynamics; the treatment of Ũ rotational
(SU(2) group) actions given in [39,41] is necessarily identical to that implied herein.
It is the permutational projective mapping aspects which distinguish the two presen-
tations. Papers [54,58] discussed the contrasting case of group actions inherent in the
use of dual tensors and gave the dimensionalities associated with the full and sub-
spatial forms of (rank-alone) dual group carrier spaces. In terms of Schur functions,
a more general square construction based on certain skew-diagonal summations was
presented in our immediate preceding paper [58]. This approach gives the k = kmax−i
sub-spatial dimensionalities in terms of a set of χ[2n−i]

12n S2n (bipartite) characters, via
equation (21) of [58]. A further important point to note here is that the subspatial aux-
iliary (k1, . . . , kn){Ṽ} forms in Liouville space mappings are now explicit parameters
of the mapping; this contrasts strongly with the original mappings over simple Hilbert
carrier space. Naturally, these v̄ = (11, . . . , 1n) : Ṽ auxiliary labels are closely related
to the system scalar invariants (SIs) and are necessary features of the augmented dual
mapping which ensure the retention of simple reducibility over the dual carrier space.
This point was stressed first in our papers [50,52] of a decade ago.
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From SJG theory applied to Liouville space recoupling [36], the number of auxil-
iary labels is two less than the number of inner (ki 6 1) (k1, . . . , kn) SU(2) spin labels.
Indeed, the completeness of both the dual group irrep set and of the {H̃

(11,...,1n){Ṽ}
}

carrier subspaces arise from the fuller description of the democratic Sn SIs. The quan-
tum physics imparted by these SI labels is an essential focus of the present work. One
notes that the derivation of SI labels utilises an additional type of symbolic encoding,
i.e. distinct from the earlier algorithmic combinatorical encodings based on Schur func-
tions and their decompositions invoked in [58]. In the specific case discussed here, the
algorithm is taken over the full S11 ⊃ · · · ⊃ S2 Yamanouchi–Gel’fand chain (YGC)
utilising the complete set of S12-based, p 6 22 (quadra-partite) irreps, derived in [58].
Before moving on to discuss the specific details of the full S12 YGC process, we would
stress that the above mappings essentially come from the study of certain quasiparticles
(called superbosons to underline their relationship to the Hilbert space mapping for-
malism of [1,6,7]), themselves defined by an augmented form of Heisenberg generator
(see [52]), namely, [s̄2

i , s
2
j]− = 2δij . In this context, retention of the right-derivation

properties [1,52] is essential to this fundamental generator description of {s2
i}-bosons

as superoperators. In addition to the simpler aspects [60] of Lie algebras, some un-
derstanding of the nature of double Gel’fand patterns and of the general role of ladder
operators in quantum mechanics is central to the material given in this section. Such
concepts are central to the study of {s2

1, (s1s2), s2
2} s-bosons, and their corresponding

adjoint s̄-bosons, ({s̄2
1, (s̄1s̄2), s̄2

2}), sets.

3. An overview of generalised YGC properties

Whilst the general outline of the Yamanouchi–Gel’fand chain process for
small n-indexed symmetric groups consists of surveying all possible node-removal
processes [10,46] (as in the introductory overviews given, e.g., in Sternberg’s text [45])
from the irrep(s) of the preceding indexed group, use of the process to yield the
distinct v labels for the system invariants focuses on the descending routes (path-
ways/flightpaths) for chain subduction. Each of these may be shown to be distinct.
One notes in this context the nature of the following illustrative stepwise subduction
process:

[10, 2]→
{

[10, 1] + [9, 2]
}
→
{

[10] + 2[9, 1] + [8, 2]
}

(S10)

→· · · →
{

3[9] + 3[8, 1] + [7, 2]
}
→
{

6[8] + 4[7, 1] + [6, 2]
}

(S8), (7)

and that of the similar processes derived from treating the [444](S12) irrep of figure 1.
All such YGC processes are subject to a condition of detailed balance at each stage
of the subduction process, so that the general criterion

χ[λ]
1n ≡

∑
[λ′]

Λ(n−i)
[λ′] χ[λ′](Sn−i) (8)
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Figure 1. Schematic view of the initial stepwise Yamanouchi–Gel’fand chain subduction process for
[444](S12), down to the S8 subset. Full details of the remaining chain subduction steps are given in

table 2.

holds ∀(n − i) > 2, where the Λ(n−i)
[λ′] are the reduction coefficients at the (n − i)th

stage. On limiting discussion for illustrative purposes to the interim S8 and final stages,
both of equation (7) and for figure 1 (as box forms of a graphical representation), the
(outer-most) detailed balances are given by respectively

for χ[10,2]
112 : 54 = (6 + 28 + 20)(S8) ⊃ · · · ⊃ (45 + 9)(S2),

(9)
for χ[444]

112 : 462 = (14 + 210 + 126 + 112)(S8) ⊃ · · · ⊃ (252 + 210)(S2),

where the latter numbers are the final monomial reduction coefficients for the full
YGC subduction onto the [2], [12] set of S2 irreps.

A complete demonstration of the distinctness of each route, down to these ter-
minal YGC chain {[λ]}S2 set, would require a more detailed listing than is possible
here. Suffice it to note that their total number of routes, or pathways, from any
specific initial irrep of character χ[λ]

1n (here of the S12 group) must equal (from equa-
tion (8)) the sum of the [2], [12] terminal monomial reduction coefficients. These
are set out in some detail over the full {λ ` (12) | ∀p 6 4} in tables 1 and 2 (with
the retention for illustrative purposes of the intermediate symmetric groups S10, S6,
etc.). Naturally the sumcheck, as a detailed-balance criterion, has been applied to all
of these reduction coefficient subduction results. A full description of each invari-
ant requires the listing of the full intermediate irrep routes inherent in the subduction
process, which finally leads to [2](S2). For convenience of presentation and brevity
in handling S12 group properties in the text, we essentially give only the monomial
reduction coefficients (RCs) here, and not the detailed sets of route maps derived from
them. However, the RC sets demonstrate the nature of the decompositional map, with
the {[λ̃], for λ ` n | p 6 4}-partite forms of the initial irrep, completely defining the
process tabulated here. The route maps terminating in [2] are those specific to the
explicit mapping labels, as derived from the Sn-invariants (SIs); they are only found
in Liouville space descriptions of dual group projective actions, as a consequence of
the mappings associated with equation (6).
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Table 1
The Yamanouchi S12 ⊃ · · · ⊃ S2 stepwise subduction process for (p 6 4)-part irrep set {[11, 1], . . . , [7, 15]}.

S11 ⊃ S10 ⊃ · · · ⊃ S6

[11] . . . 83 . . . 74 . . . 65 . . . 10 . . . 73 . . . 64 . . . 55 . . . 6 . . . 33 . . . 222 . . .[16]
[12] 1 0 1 1
[11, 1] 1 1 0 2 1 6 1
[10, 2] 0 1 1 0 1 2 1 15 6 1 0
[10, 11] 1 0 1 1 2 0 1 15 6 0 1
[9, 3] 1 0 1 0 1 2 0 1 0 20 15 6 0 1
[921] 1 1 0 1 0 2 2 2 0 1 0 40 30 6 6 0 1
[9111] 1 0 0 1 0 1 0 2 0 0 1 20 15 0 6 0 0 1

[8, 4] 1 0 0 1 0 0 1 0 2 0 0 1 15 20 15 0 5
[831] 1 1 0 0 1 0 0 2 1 2 2 0 0 1 45 60 30 15 6 6
[822] 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 30 40 15 15 0 6 1
[8211] 1 1 0 0 0 1 0 0 0 1 2 0 2 2 0 0 0 1 45 60 15 30 0 6 6 0 1
[813] 1 0 0 0 0 1 1 0 0 2 0 0 0 0 1 15 20 0 15 0 0 6 0 0 1

[75] 1 0 0 0 0 1 1 0 0 2 1 6 15 19 0 9 0
[741] 1 1 0 1 2 1 0 2 2 0 1 24 60 60 20 24 14 0 0
[732] 0 1 1 0 0 1 1 2 0 0 2 2 0 0 1 30 75 60 40 15 30 0 5 0
[7311] 0 1 1 0 0 0 1 1 2 1 0 2 0 2 0 0 0 1 36 90 60 60 15 30 15 0 5 0
[7221] 0 0 1 1 0 0 0 0 1 0 2 1 0 0 2 2 0 0 0 0 1 30 75 40 60 0 30 15 6 6 0
[7213] 0 0 0 1 1 0 0 0 0 0 1 0 1 2 0 0 0 2 2 0 0 0 0 0 1 24 60 20 60 0 15 30 0 6 6
[715] 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 1 6 15 0 20 0 0 15 0 0 6 1
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Table 1
(Continued.)

S5 S4 S3 S2

5 . . . 311 . . . 4 31 22 211 1 3 21 13 2 11
∑

= χ[λ] [λ]
1 1 1 1 1 [12]
7 1 0 8 1 9 1 10 1 11 [11, 1]

21 7 1 0 28 8 1 36 9 45 9 54 [10, 2]
21 7 0 1 28 8 0 1 36 9 1 45 10 55 [10, 11]
35 21 7 0 0 56 28 7 – 84 35 – 119 35 154 [9, 3]
70 42 7 7 1 112 56 8 8 168 72 8 250 80 320 [9, 21]
35 21 0 7 0 1 56 28 0 8 1 84 36 9 120 45 165 [9, 111]
35 35 20 0 0 0 70 55 20 0 0 125 75 0 200 75 275 [8, 4]

105 105 42 21 6 0 210 168 48 27 0 378 233 27 611 260 891 [8, 31]
70 70 21 21 7 0 140 112 28 28 0 252 168 28 420 196 616 [8, 22]

105 105 21 42 7 7 210 168 28 56 7 378 252 63 630 315 945 [8, 211]
35 35 0 21 0 7 70 56 0 28 8 126 84 36 210 120 330 [8, 1111]
21 34 28 0 – – 55 62 28 0 0 117 90 0 207 90 297 [7, 5]
84 140 98 34 14 0 224 272 112 48 – 496 432 48 928 480 1408 [7, 41]

105 175 105 70 35 0 280 350 140 105 – 630 595 105 1225 700 1925 [7, 32]
126 210 105 105 35 20 336 420 140 160 20 756 720 180 1476 900 2376 [7, 311]
105 175 70 105 42 21 280 350 112 168 21 630 630 189 1260 819 2079 [7, 221]

84 140 35 105 21 42 224 280 56 168 48 504 504 216 1008 720 1728 [7, 2111]
21 35 0 35 0 21 56 70 0 0 – 126 126 84 252 210 462 [7, 15]
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Table 2
The Yamanouchi process applied to remaining λ ` (n = 12) irreps, i.e. of four-part (or less).

S11 ⊃ S10 ⊃ · · · ⊃ S6 ⊃
[65] . . . 551 . . . 443 64 . . . 55 . . . 442 . . . 443 . . . 423 6 . . . 33 . . . 222 . . .

[6,6] 1 0 1 0 1 1 5 9 0 5 0
[651] 1 1 0 1 2 1 0 2 2 0 5 30 54 14 30 14 0
[642] 0 1 1 0 1 0 1 2 1 0 0 2 2 0 9 54 90 45 45 54 0 9 0
[6411] 0 1 0 1 0 0 0 1 0 1 2 0 1 0 0 2 0 2 0 10 60 90 60 45 54 19 0 9
[633] 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 2 0 0 0 0 1 0 5 30 45 30 20 40 0 10 0
∗ ∗
[6222] 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 5 30 30 45 0 40 20 15 15
[62211] 0 0 0 0 1 1 0 1 0 0 0 1 2 1 0 0 0 0 2 2 0 0 0 1 9 54 45 90 0 60 60 15 30 15 0
[6214] 0 1 1 0 1 0 0 0 1 2 0 2 2 0 0 0 0 1 5 30 15 60 0 20 60 0 15 30 5
[616] ≡ [715]⊗ [112]
[552] 1 1 0 1 2 1 0 1 0 14 45 19 30 30 0 5 0
[5511] 1 0 1 0 1 2 0 1 0 0 1 0 15 45 24 30 30 9 0 5
[543] 0 1 0 1 1 0 0 1 2 0 2 0 2 0 0 0 14 54 30 40 61 0 16 0
∗
[444] 1 0 1 0 1 0 0 0 9 5 10 16 0 5 0
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Table 2
(Continued.)

S5 ⊃ S4 S3 S2

5 41 32 311 221 213 15 4 31 22 212 14 3 21 13 [2] [11]
∑

= χ[λ]12
1 [λ]

6 14 14 0 0 0 0 20 28 14 – – 48 42 – 90 42 132 [66]
35 98 98 28 14 0 0 133 224 112 42 – 357 378 42 735 420 1155 [651]
63 189 189 99 63 0 0 252 477 252 162 – 729 891 162 1620 1053 2673 [642]
70 210 189 133 63 28 0 280 532 252 224 28 812 1008 252 1820 1260 3080 [6411]
35 105 105 70 50 0 0 140 280 155 120 – 420 555 120 975 675 1650 [633]
35 105 70 105 70 35 0 140 280 140 210 35 420 630 245 1050 875 1925 [6222]
63 189 105 210 105 105 15 252 504 210 420 120 756 1134 540 1890 1674 3564 [62211]
35 105 35 140 35 105 35 140 280 70 280 140 420 630 420 1050 1050 2100 [6214]

[616] ≡ [715]⊗ [112]
14 78 105 49 35 0 0 92 232 140 84 – 324 456 84 780 540 1320 [552]
15 84 105 63 35 14 0 99 252 140 112 14 351 504 126 855 630 1485 [5511]
14 98 155 91 77 0 0 112 344 232 168 – 456 744 168 1200 912 2112 [543]

0 14 35 21 21 0 0 14 70 56 42 – 84 168 42 252 210 462 [444]
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4. {Ṽ}(Sn) democratic label sets for the scalar invariants

4.1. Numbers of independent SIs for 2n 6 6, . . . , 12, 20 via Weyl bracket formalism

For even number of spins in (say) an [A]2n-based ensemble system, the cardinality
of independent SIs, discussed elsewhere [14,60], reduces to establishing the fundamen-
tal N (2n)

f : SI component and then including suitable combinatorially weighted forms for

all the lower (previously established) N (2n′) terms. As pointed out by Corio [14] in
his unitary-group-based |SU (1)|((⊗SU(2))2n) notation, a small modification has to be
included to allow for Weyl time-reversal symmetry (TRS). For the N (10)

(SI) case [56],

this only applies to the
((i)

2

)
weighted (lower) components where (i) (<n), the number

of actual Weyl brackets (each containing a pair of spin operators), is odd; this property
is a consequence of noting that, e.g.,(

ÎA • ÎB
)(
ÎC • ÎD

)
≡
(
ÎC • ÎD

)(
ÎA • ÎB

)
,

or other single interchanges of Weyl bracket components, are equivalent.
More recently [56,60] in a dual group context, the underlying fundamental com-

ponent N (2n)
f : SI terms themselves have been given as a more convenient form being

defined (here for 2n spin operators) as a sum over all the bipartite characters for the
half-index specific Sn group. On noting that the bipartite characters are simply dif-
ference between combinatorials, the underlying fundamental terms of the series for
2n = 6, 8, 10, 12, . . . and 2n = 20 are open then to enumeration, the results being that

N (2n)
f : SI ≡

{
{5, 14, 42, 132}; 16796

}
,

respectively, for the set of 2n values indicated above. From these N (2n)
f : SI terms and the

Weyl TRS-modified [14] weighting process [56,60], or otherwise, it is straightforward
to show that in consequence there must be{

N (2n)
(SI)

}
≡ {15, 4213, and 613,327,978}

independent scalar invariants for the 2n = 6, 12, 20-fold spin ensembles, respectively.
Further specific details may be found in table 1 of [56]. Finally, we would stress that
these are “independent” SIs, whereas it is possible that the YGC process discussed
below could furnish over-determined sets of SI labels for 2n � 8-fold [A]2n spin
ensembles.

4.2. SI labels via YGC route-maps Sn−1 ⊃ · · · ⊃ [2]S2: Illustrative S66 examples

On considering encoding of SIs from Sn−1 ⊃ · · · ⊃ S2, one finds for irreps of
n = 4, 5 indexed democratic systems down as far as the initial self-associate form(s)
under Sn: (

[4]
)
→
{

[3]; [2]
}

,(
[31]

)
→
{

[3]; [2]
}

, (10)(
[31]

)
→
{

[21]; [2]
}

;



F.P. Temme / S12-invariants of [A]12 spin systems: YGC-pathways 145

whereas the five-fold case yields(
[5]
)
→
{

[4]; [3]; [2]
}

,(
[41]

)
→
{

[4]; [3]; [2]
}

→
{

[31]; [3]; [2]
}

(11)
→
{

[31]; [21]; [2]
}

,(
[32]

)
→
{

[31]; [3]; [2]
}

,(
[32]

)
→
{

[31]; [21]; [2]
}
.

Within a criterion that no SA irrep, or λ ` n : p > 3 partitioned form, may include a
subsequent lower-indexed SA irrep in its pathway to [2], there are 3 and 6 independent
scalar invariants, respectively, for these systems, in accord with established operator-
product-based results [14].

Similarly, for the [A]6S6 spin cluster within the above criteria, one finds that there
are now 15 independent SIs or allowed pathways to [2], over the following compacted
set, or hierarchies: (

[6] or [51]
)
→
{

[5]; [4]; [3]; [2]
}

, (12)(
[51] or [42]

)
→
{

[41]; [4]; [3]; [2]
}

→
{

[41]; [31]; [3]; [2]
}

→
{

[41]; [31]; [21]; [2]
}

, (13)(
[42] or [33]

)
→
{

[32]; [31]; [3]; [2]
}

→
{

[32], [31]; [21]; [2]
}

, (14)(
[411]

)
→
{

[41]; [4]; [3]; [2]
}

→
{

[41]; [31]; [3]; [2]
}

, (15)(
[321]

)
→
{

[32]; [31]; [3]; [2]
}
. (16)

Corio [14] has set out the precise equivalently labelled operator forms (as in Sanctuary–
Jucys graph (SJG) theory [25,36]) for the three cases (of equations (10), (11) and (12)–
(16)) discussed above.

The number of forms for the independent SIs grows rather rapidly beyond six-
fold spin stage for [A . . .]n clusters. However, from the earlier discussions of the role
of auxiliary labelling of carrier subspaces in [52] and Corio’s work [14], it follows
that p > 5 branched partite initial irreps, in general, are excluded from the SI labelling
sets.

5. Intensive structure of Liouville space, an introduction

As a consequence of the recognition in [52] of the precise form of Ũ-transforma-
tions – discussed originally in the graphical context of SJG recoupling theory [25,36]
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– of Liouvillian tensorial (integer k rank) bases, via

Dj(U)|kqv〉〉Dj′†(U) =
∑
q′

Dkqq′
(
Ũ
)∣∣kq′v〉〉, (17)

it follows that individual quasiparticles of Liouville space, superbosons, are associated
with certain generalised double Gel’fand pattern structures, cf. Hilbert space views [1,
6,7], with ∆̃ being a (pattern) shift operator in the Liouvillian form of Wigner–Eckart
theorem (see [52]), now within (with minor adjust of k, q notation here to K,Q in
superboson maps, for clarity in a further relationship below) K integer, −K 6 Q 6
K, frequently with K = 1, so that both K,Q of Liouville space are integer. In
the following mapping relationships, the (Liouvillian) pattern structures are shown
enclosed in double brackets:

s2
1→

〈〈((
2K

K + ∆̃
K + |Q| 0

))〉〉
, (18)

s2
2→

〈〈((
2K

K + ∆̃
K − |Q| 0

))〉〉
, or (19)

s2
1→

〈〈((
2

2
2

0

))〉〉
, (20)

s2
2→

〈〈((
2

2
0

0

))〉〉
, (21)

(s1s2)→
〈〈((

2K
K + ∆̃
K + 0

0

))〉〉
, or (22)

s1s2→
〈〈((

2
2
1

0

))〉〉
. (23)

Based on the standard operator-to-boson mapping realisations{
Î+, Î0, Î−

}
≡
{
s1s̄2,

(
s̄1s1 − s̄2s2

)
, s2s̄1

}
, (24)

one has (for Îµ ≡ [̂Iµ, ·]−) the following ladder-operator properties (whose initial
commutator vanishes unless the index i = 1, 2 is correlated respectively with signs ∓):[

Î∓, s2
i

]
− ≡ s1s2,

or conversely for specific order noted,[
Î±, s1s2

]
− ≡

{
s2

1,

s2
2.

(25)

Naturally, the Î+,0,− (super)operators act on the Liouvillian {|kqv〉〉} bases in a manner
consistent with the well-known standard {kq} ladder operations set out in equations (6)
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and (17)–(19) of [52]. For the equivalent non-pattern algebraic formulation the reader
is referred to [39,41,42,49].

The purpose of stressing the above is to introduce the intensive properties of
Liouville space [52], its Clebsch–Gordan (CG) coefficients and various ideas connected
with Wigner–Eckart (WE) theorem applied to tensorial forms [36,39] of this space.
Most notable of these are:

(a) that the Wigner fundamental (super)operators are simply the CG coefficients (of
Liouville space), which as in [1,6,7,36] may themselves be recoupled;

(b) that a specialised form of WE theorem exists, within which

TKQ(v)|kq〉〉 ≡
∑

∆̃

〈〈
K + ∆̃

∥∥TK∥∥K〉〉
×
〈〈((

2K
K + ∆̃
K +Q

0

))〉〉
|kq〉〉, (26)

where the 〈〈. . . ||TK || . . .〉〉 is a reduced matrix element of the Liouville space
formalism;

(c) that the concept of an invariant unit (̃Ik∆̃) operator(s) is associated with a charac-
teristic step function, which plays an important role in the algebra;

(d) hence, the idea of the so-called intensive structure is inherent in a wide range of
properties. It has its greatest impact on the nature of orthogonality and in the
analogous invariant unit operator properties, with some of these being applied
over the individual H̃

(11...1n){Ṽ}
subspaces.

On account of the discourse given in [54], we shall restrict explicit discussion
to brief illuminations of the more accessible concepts. In particular, we omit almost
all reference to the adjunct quasiparticle properties altogether, since they are set out
at length elsewhere [52] and only add one further conceptual point to the underlying
theory, namely in relation to the question of signs which arise from the structure of
semi-simple Lie algebras [1,6,7].

In order to stress the dual projective aspects of boson-pattern algebras applied to
Liouville space, one notes the equivalent form for permutational projections (based on
Ỹ , Ỹ ′ being Yamanouchi symbols) to equation (2); this is then clearly

P |kqv〉〉P † =
∑

Ỹ ′≡ ˜(i1,...,in)
′

P
(
Γ̃
)
Ỹ ′Ỹ
∣∣kq(Ỹ ′ ≡ ˜(i1, . . . , in)

′)〉〉
. (27)

In the context of class projective formulations, explicit examples of the above permu-
tation operation applied to {|kqv〉〉} bases were given in [41,42,49]. Finally in this
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section, we give a couple of explicit illustrative examples (from SU(2)×S4) of double
Gel’fand pattern-algebra shape sets, namely that for the initial triply degenerate form,

[
3̃1
]
≡







2

4 0

4 4 0

4 4 4 0

4 4 0

4 0

k + q




:





2

4 0

4 4 0

4 4 2 0

4 4 0

4 0

k + q





:





2

4 0

4 4 0

4 4 0 0

4 4 0

4 0

k + q






, (28)

and now, in contrast, the doubly degenerate irrep double Gel’fand forms become

[
2̃2
]
≡







2
4 0

4 2 0
4 4 2 0

4 2 0
4 0
k + q




:





2
4 0

4 2 0
4 2 0 0

4 2 0
4 0
k + q






; (29)

finally, the [2̃11] irreps clearly correspond to

[
2̃11
]
≡







2

2 0

4 2 0

4 4 2 0

4 2 0

2 0

k + q




:





2

2 0

4 2 0

4 2 2 0

4 2 0

2 0

k + q
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:





2

2 0

4 2 0

4 2 0 0

4 2 0

2 0

k + q






. (30)

6. Applications of dual tensors and their projective decompositions

The type of NMR applications to which this work applies are those which are
concerned with multiquantum evolution (or coherence transfer). The recent work of
Carravetta et al. [9] on [AX]n[AB]n, 2 6 n 6 4 on the octo- (or certain tetra-) fluo-
ronaphthenes, where spin cluster is subject to tumbling within a liquid-crystal medium
(as reviewed, e.g., in [17,32]), is typical. In the actual examples given in [9,16,17,32],
the interactions include both intramolecular (isotropic) dipolar Dij coupling compo-
nents and J iso

ij indirect interactions. In addition here, the S4 ↓ D2 subduction from
the structure of the zeroth-order (cluster) Hamiltonian implies that the SI-based re-
coupling aspects are wholly tractable [20] in these circumstances. The [AX]4(S4)
or [A]4[X]2(S4 ↓ D2) systems with large magnitude intracluster interactions could
offer a greater chance of meaningfully exploring Corio’s (1999) suggestion [14] that
small quartic spin–spin interactions (mentioned in his study of SIs) may possibly ex-
ist. By contrast to Corio’s remarks [14], it is suggested that other, e.g., (AA′A′′A′′′),
NMR cluster-based systems would be more suitable than the well-known symmetrised
AA′XX ′ system cited by him, since the four-fold quantum processes of this latter
case would correspond to the constants-of-motion, and therefore, in general, would
not contain any detailed information. (To study possible quartic interactions, larger
isochronous spin systems should be investigated, where the interaction does not corre-
spond to the constants-of-motion of the system. The complexity of four-fold AA′A′′A′′′

symmetrised cluster system NMR spectra, especially for isotropic dipolar Liouvillians,
could help to explain why such interaction has not been detected previously.)

For systems involving simple scalar interaction systems, the question of the na-
ture of coherence transfer under Jij interactions of the Liouvillian within (mono)cluster
systems [48] follows on conceptually directly from the (1985) Laplace-transform for-
mulation of AB or AX spin systems by Sanctuary [39,38] and a later specialisation
of the AB formulation to [A]2 (or else to a coherent superpositional (CSP) basis)
problems [48]. Whilst Listerud et al. [31,33] utilise a number-type notation, which
is analogous to the S3-box notation, their work does not actually consider either the
nature of democratic recoupling (as in the few-body Hilbert quantum physics formal-
ism of [30]), or the SJG-based invariant structure of their strongly-coupled total [A]3

system, despite the authors’ formal Liouvillian viewpoint in the work. A recent dis-



150 F.P. Temme / S12-invariants of [A]12 spin systems: YGC-pathways

cussion [54] of various NMR applications in similar contexts should be consulted
for its overview of experimentally focused work. Further material on the mathemat-
ical chemistry of dual group nuclear spin problems may be found in [41,42,49], or
else in works which discuss the mathematical determinacy of natural group embed-
dings [4,21,53,55,59,62].

As a final ancillary brief comment to the discussions of this section, it is of
topical interest to note that certain decompositional aspects of NMR density matrix
descriptions are similar to both to that invoked in the multiplet projection treatments
of σ(t) in the 1983 Sanctuary work [37] and to ideas concerned with the comtempory
role of the density matrix in recent NMR modelling of idealised quantum computing.
This topic is both extensive [15,19,22,29,43] and developing at a fast pace. Although
the quantum computing gate processes are concerned directly with Dk(Ũ) rotations, to
date the systems used to model the phenomena have been restricted to AX, AMX,
or AMPX weakly coupled systems involving quasi-pure states and an action described
in the inner SU(2) product basis literature as an entanglement [15,19,22,29,43]. Whilst
it would seem that NMR model systems (within known theoretical group properties)
may have yet wider technological significance in the future, it is not clear to date
whether [A]n(X), or [AX]n NMR cluster systems with their natural dependence scalar
invariants (alias, entanglements), or indeed their overall (dual) tensorial formalisms,
have a role to play in conceptually modelling quantum computing processes.

7. Concluding remarks on SU(2) × Sn based spin systems

The work has stressed how the proper democratic invariants, based on p 6 4
part λ ` n irreps, are derived using YGC subduction route maps, starting from the
dual projective properties given in the rank-alone formalism of our related paper [58].
To place the sets of independent scalar invariants in a wider physics context, we have
emphasised the role of transformational properties and the pertinence of (Liouvillian
subspatial) boson (double) pattern algebras.

Our conceptual encoding approach, based on Schur functions and YGC subduc-
tion, has yielded a model pertinent to certain recent experimental-focused NMR work,
such as that of Corio [14], or the work of Avent [2] and Carravetta et al. [9] based on
COSY NMR techniques utilising modern ideas on multiquantum detection [2,18]. The
ideas presented here also correlate well with various underlying aspects of the theoret-
ical physics of many-body problems, besides stressing for transformational properties
the disjunction between graphical and projective techniques which occurs once a spin
system is determined more than a single invariant, and thus subject to high degeneracy.

The fuller value of Yamanouchi–Gel’fand chains (based on pre-self-associate ini-
tial Sn irreps), and their associated reduction coefficients, in describing the scalar
invariants has been recognised, as offering some new physical insight into a long-
standing problem in dynamics. The (Sn−1 ⊃ · · · ⊃ S2) labellings given here avoid the
inherent ambiguities (even for 3, 4 spin clusters) of Jucys graph theoretical systems,
concerning the auxiliary labels of quantum physics. Illustrations of several complete
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independent SI sets, to respect of their YGC-based labelling and the cardinality of their
independent forms, have been given in the earlier discussion. In addition, our treat-
ment of YGC labelling for system invariants has focussed on the [A . . .]12(S12) spin
system(s) and their extensive set of SIs. In our approach, we have utilised many of
the fundamental tensorial properties, referred to in [58], as well as Weyl time-reversal
symmetry, other aspects of pre-1972 physics, and several of NMR-based ideas, e.g.,
those cited by Corio [14].
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Appendix A. Outline of YGC-based subduction route maps, derived from
[11, 1], [10, 2] irreps

The hierarchical route-map structure, showing the distinctness of each route,
which use in invariant labelling necessarily ends on [2], is set out in the two examples;
these are the 10 and 45 distinct route maps derived from [11, 1], [10, 2], respectively,
with the former spanning:


11 10 9 8 . . . 2
10, 1 10 9 8 . . . 2
10, 1 9, 1 8 7 . . . 2

10, 1 9, 1 8, 1 . . . 2, 1 2

 ,

totalling 10 routes in all to [2].
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In contrast, for [10, 2], one finds

10, 1 10 2
10, 1 9, 1 9 2

2, 1 2: sum 9

9, 2 9, 1 9 2
8, 2 8, 1 8 2
8, 2 7, 1 6, 1 6 2

3, 1 2, 1 2: sum 8

etc. subseq. seqs. summing to 7, 6, 5, 4, 3

9, 2 8, 2 7, 2 . . . 3, 1 3 2
9, 2 8, 2 7, 2 . . . 2, 2 2, 1 2: sum 2



,

or, 2+3+· · ·+9: totals to 45 routes in all. Clearly even attempting to record the simpler
cases in hierarchical route forms is rather tedious and impractical. Once the significance
of the reduction coefficients is accepted, as being in 1 : 1 correspondence to the distinct
hierarchical component routes, the direct presentation is no longer necessary.

Appendix B. Illustrative additional mappings: S12 ⊃ · · · ⊃ S5 ⊃ A5

As a corollary to the mappings of tables 1, 2, we note the following mapping
over Γ′(⊃ · · · ⊃ S5 ⊃ A5) = {A,G,H, (T1 + T3)}, as being distinct both from the full
YGC and natural embedding [57] processes:

[11, 1]→ {7, 7, 0, 0}Γ′,
[10, 2]→ {21, 7, 1, 0}Γ′,

[10, 11]→ {21, 7, 0, 1}Γ′, (B.1)

[93]→ {35, 21, 7, 0}Γ′,
[921]→ {70, 42, 8, 7}Γ′, (B.2)[
913]→ {35, 22, 0, 7}Γ′, (B.3)

[84]→ {35, 35, 20, 0}Γ′,
[831]→ {105, 105, 48, 21}Γ′,
[822]→ {70, 70, 28, 21}Γ′, (B.4)

[8211]→ {105, 112, 28, 42}Γ′, down to (B.5)

[75]→ {21, 34, 28, 0}Γ′,
[741]→ {84, 140, 112, 34}Γ′,
[732]→ {105, 175, 140, 70}Γ′ , (B.6)

[7311]→ {126, 230, 140, 105}Γ′ ,
[7221]→ {100, 196, 112, 105}Γ′ , finally to (B.7)

[552]→ {14, 78, 140, 49}Γ′, (B.8)
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[5511]→ {15, 98, 140, 63}Γ′, (B.9)

[543]→ {14, 98, 232, 91}Γ′,
[444]→ {0, 14, 56, 21}Γ′. (B.10)

At the time of writing, there is no known molecular physics role for these extended
chain mappings.
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